PITAC HIGH-END COMPUTING

FEBRUARY 17, 1999

Presentation Structure

- Committee Members
- Findings
- Funding Recommendations
- Comments

PITAC High-End Sub-panel Innovative Technologies & Architecture

David Patterson

Thomas Sterling Mary Vernon

PITAC High-End Sub-panel Software

Jack Dongarra

Dan Reed, George Spix

Irwing Wladawsky-Berger

PITAC High-End Sub-panel Sustain Petaops/Petaflops

Thomas Sterling
Steve Wallach

PITAC High-End Sub-panel Acquisition of High-End Systems

Steve Wallach Larry Smarr
Dave Cooper Bo Ewald

FINDINGS

6 Findings

- High-End Computing is essential to science and engineering research
- High-End Computing is an enabling element of the US national security program
- New applications of high-end computing are ripe for exploration
- US suppliers of high-end systems suffer from difficult market pressure

FINDINGS

- 6 Innovations are required in high-end systems
 - application-development software
 - algorithms
 - component technologies
 - computer architecture
- High-End computing Available to civilian science & engineering is dangerously behind the state of the art

- High-End computing essential for science and engineering research
 - understand natural phenomena
 - explore and optimize engineering designs
 - current "extreme" performed by mission agencies like DoE (ASCI) and DoD
 - Academic sponsored by NSF

- High-End computing is essential for the US national security program
 - DoD HPC Modernization Programs
 - DoE ASCI
 - NSA

- New Applications of High-End are ripe for exploration
 - develop new uses of high-end to promote a better understanding of our world
 - improve services to all citizens
 - New uses
 - intelligent systems data mining
 - design
 - crisis management
 - infrastructure support

- US Suppliers of high-end suffer from difficult market pressures
 - consolidation within industry
 - movement away from vectors
 - foreign competitors have government subsidies

- Continued Innovations are required for high-end systems
 - breakthroughs needed that are aimed at sustained performance
 - current federal programs are too small
 - trickle down and technology transfer to midrange

- High-End computing available to civilian science and engineering behind the state of the art
 - factor of 10 to 20 behind largest installed systems
 - reduction of NSF centers from 4 to 2 without increasing the funding for remaining has reduced the overall capacity available to academic researchers.

RECOMMENDATIONS

- Fund Research into innovative computing technologies and architectures
- Fund R&D on software to improve the performance of high-end computing
- Attain a sustained petaops/petaflops on real applications by 2010
- Fund the acquisition of the most powerful high-end systems to support science and engineering research
- Expand the CIC and HECC working group's coordination to handle all major elements of the governments investment in high-end computing

- Fund Innovative Computing Technologies and Architecture
 - new technologies; optical, quantum, biological,
 and neuromorphic
 - new simulation and analysis tools
 - industry participation needed.

- Fund R&D on software to improve performance.
 - System software
 - Algorithm development
 - Manage integrated systems in a balanced fashion

- Fund research to build a system to attain a sustained petaop/petaflop system on real applications by 2010
 - substantial technological advances needed
 - goal is a technology driver
 - balanced effort of both hardware and software

- Fund the acquisition of the most powerful high-end systems to support science and engineering research
 - recent Nobel Prize in Chemistry
 - track the DoE ASCI program
 - support of Research Expeditions to the 21st.
 Century

- Expand Government's coordination process to include all major elements of the investment in high-end computing
 - budgets and plans provided to NSTC, CIC
 HECC working group.
 - Need a cross-cut process to better invest and evaluate investments

Funding Recommendation

Table 1 Funding increases for High-End Computing Research (\$ millions)

	FY 2000	FY 2001	FY 2002	FY 2003	FY 2004
High-End Software, Architectures, and Petaops	180	205	240	270	300
Computing					
High-End Acquisitions	90	100	110	120	130
Total	270	305	350	390	430
			-		

COMMENTS

- PACI Center Recommendations
- PetaOp/PetaFlop Expedition
- Coordination of the government's investment in High-End Computing